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Riemannian Geometry of Strong-Laser Plasma 
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The optical metric for a strong-laser plasma is derived. The affine connection 
and curvature related to the optical metric are given and their spatial distributions 
are studied numerically. 

1. INTRODUCTION 

As is well known, Einstein's general relativity is an elegant theory for 
describing the four-dimensional space-time structure. All physical laws and 
equations obeyed by physical processes are formulated in general covariant 
form, and the space-time structure is described by the gravitational metric. 
According to this theory, light propagating through the gravitational field 
will be curved. Correspondingly, the optical properties of a plasma and other 
moving media are characterized by their permittivity and permeability. Light 
traveling through inhomogeneous moving media will be deflected as if the 
space-time is curved. The similarity of the optical phenomena occurring in 
a gravitational field and in a moving medium can be described by the optical 
metric (Gordon, 1923). 

The optical metric has been used to study problems such as the general 
relativistic ponderomotive force in a moving medium (Zhu and Shen, 1987), 
the electron energy gain in a beat wave laser accelerator (Zhu et al., 1989), 
the frequency matching in a laser accelerator (Zhu, 1989), the effect of 
medium background on hydrogen spectra (Zhu and Shen, 1988), the electron 
spectra in a strong-laser plasma (Zhu, 1992) and the theory of nonlinear 
medium susceptibility and its possible experimental study (Zhu and Shen, 
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1991). It is shown that the introduction of the optical metric not only can 
explain naany physical phenomena in the interaction of a strong field with 
matter, but generalizes the physical model to curved space-time including a 
gravitational field. 

The behavior of light can be described by using the geodesic equation and 
geodesic deviation equation. The affine connection and curvature appearing in 
these equations can be derived as usual if the light-medium system is regarded 
as a "curved" space-time governed by the optical metric. It is necessary to 
develop the geometrical properties of the space-time with the optical metric 
in more detail in order to get information on the behavior of light in a 
moving medium. 

In this paper, the optical metric for the high-power laser-plasma system 
is derived on the basis of the definition given by Gordon (1923). The affine 
connection and curvature related to the optical metric are given and their 
spatial distributions are studied numerically. 

2. DERIVATION OF THE OPTICAL METRIC, AFFINE 
CONNECTION, AND CURVATURE FOR THE STRONG-LASER 
PLASMA 

The optical metric is defined as (Gordon, 1923) 

1) 
= - u~u~ (1) 

where g ~  is the gravitational metric with the signature ( - , + ,  + , + )  and the 
space-time line element d'r z = g ~  dx  ~ dx  ~, ~ is the scalar permittivity, Ix is the 
permeability, and u ~ is the four-dimensional velocity of the moving medium. 

If the gravitational effect is negligible, the space-time is flat, i.e., 

g~,, = rl~,, (2) 

Xloo = - 1 (3) 

2 q l l  : q q 2 2  = ' I ] 33  : 1 (4) 

The laser plasma is assumed to move along the x direction. Then we have 

~ = 1  

~ = I - N  
/ ~2"-1 - l / 2  

u ~  [ 1 - / - C - ~ )  ] =[1-(C~N~I2]\-~][ 
- 1 /2  

(5) 

(6) 

(7) 
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u ~ = 1 -  = C~Ns 1 -  (8) 
\ CNlt_ 

/12 --- //3 : 0 (9) 

with N = n/nc, Ns = nflnc, and Vx = vx/C, ,  where n is the plasma density, 
nc = mto2/4we 2 is the critical density of the plasma, e and m are the electron 
charge and mass, respectively, ~o is the laser frequency, Vx = dx /d t  is the 
plasma velocity relative to the laboratory frame, C,. = ( Z T f l M )  1/2 is the sound 
speed, T~ is the electron temperature, Z is the ion charge number, M is the 
ion mass, C is the velocity of light, and ns is the plasma density at the 
sound speed. 

For the quasistatic case, the self-consistent plasma density and laser 
field have been obtained, and the laser intensity is related to the plasma 
density by (Shen and Zhu, 1988) 

[A] 2 = [As[ 2 - 2 ( N Z / N  2 - 2 In N, + 2 In N - 1) (10) 

where A = l elE/moJVe is the normalized electric field intensity, E is the 
electric field intensity, ve = (TJm) u2 is the thermal velocity of  the electrons, 
and As is the normalized electric field intensity at the sound speed. 

Substitution of equations (2)-(9) into equation (1) gives the optical 
metric 

goo = - 1 + 1 1 - - 

_ g o , -  c(Cs-zN~)v)[ 1 \ - - ~ j j  

C N ] J  

- 1  

gl, = 1  - ( N____~(C,,.N., 1 - 

\1 - N ] \  CN ] [_ 

g22 = g33 = 1 

If ( C s N , / C N )  z < <  1, equations (11)-(13) are reduced to 

1 
g o o -  1 - N  

GN,,, 

c(1 - N) 

g l l  = I 

(11) 

(12) 

1 

(13) 

(14) 

(15) 

(16) 

(17) 
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The affine connection in the curved space-time with the gravitational metric 
g~. is given by (Weinberg, 1972) 

F ~  = ~ g (g~,x + g~• - gx~,~) (18) 

where g ~  gx~ = 8~. and g~,• is the ordinary derivative of gr Similarly, the 
affine connection in the space-time with the optical metric ~ .  can be written as 

- 1 
F ~  = ~ ~'~v(~,• + g~x,~ - gx~,~) (19) 

where ~r'"~x~ = 8~, and g~.,x is the ordinary derivative of ~ .  
From equations (14)-(17) we obtain the nonzero components of the 

affine connection F ~  

~o ~ = kCsN~ dN 
2C(1 - N) 2 d---~ (20) 

Ho t _ k dU (21) 
2(1 - N) d~ 

~ o _  kCsN~ dN (22) 
C(1 - N) d~ 

F~o - k d N  (23 )  
2(1 - N )  2 d{ 

~ = kC, N~ dN (24) 
2C(1 - N)  2 d~ 

-- k(CsNO 2 dN (25) 
F], = C2- ~ _-- ~)2 d~ 

with ~ = kx. 
The curvature tensor in the space-time with the optical metric g~v can 

be expressed as 
~ p ~ p R ~  - F ~ , ~  + F~v,~ - F ~ F , ~  + F• (26) 

Inserting equations (20)-(25) into equation (26), we obtain the nonzero 
components of the curvature tensor 

3k2C~Ns (dN~ 2 (27) 
R~176 - 4 C - ~  _--" ~ ) 3  \ d ~ ]  - 2C(1  - N) 2 d~ 2 

_ 3kZCsU~ (dN~ 2 + k2QU~ dZN 
R~176 - 4C--~ ~ N) 3 \ d~]  2C(1 - N) 2 d~ 2 (28) 

k2C~Ns d2N 
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[- k2CZ N. { 
- = I R~~176 L2c-~ 7~r)3 

2 2 2 __[ k~C.~N~ 
R~ = L2C2(1 Z ~r)3 + 

k 2 d2N 
RIo t - -  

2(1 - N) 2 d{ 2 

k 2 d2N 
R ~ I O  -"= - -  4 -  2(1 - N) 2 d{ 2 

RI10 - k2C';N; d2N 
2C(1 - N) 2 d{ 2 

3k 2 ](dNI2 + k 2 d2N 
+ 4(1 - N)2J\d~] 2(1 - N) d l ~  2 

3k 2 ]{dN'~ 2 k 2 dZN 
4(1 C )v )gJ~ ,~)  2(1 - N) d{ 2 

3k ~ ( < 2  
4(l ~ )V) 3 \ d ~ J  

4(1 ---N) ~ \de) 

3k2C,.N~ {dNI 2 
4c(1 - N) 3 \d~]  

(29) 

(30) 

(31) 

(32) 

(33) 

k2C~N~ dZN 3k2C~N~ (dNI 2 (34) 
Rlot - 2C(1 - N)  2 d~ ~ + 4C--~ ~ N)  3 \ - ~ J  

From equations (27)-(34), we can obtain the nonzero components of 
the Ricci tensor R ~  --= R~x.,-4 

k2 d2N 3k2 / | I'dN'~2 
Roo = 2(1 - N) 2 d~ 2 4(1 Z-N) 3 \ d ~ ]  (35) 

- kzC,.N~ dZU 3k2C~U~ (dN] z 
Rot = Rio = 2C(1 - N) 2 d~ 2 + 4CO _--"-~)3 \ d ~ ]  (36) 

- - _ _  k 2 daN [ k 2 C . 2 g  2 3k 2 ]{dN) 2 
Rll 2(1 -- N) d{ ~ + [2c-~i- ---TV) 3 + 4(1 ~ )v)zJ~-d--(] (37) 

Then the scalar curvature in the space-time with the optical metric ~ for a 
high-power laser-plasma system has the form 

= I k2 "4- k2C'2N2 ] d2N q- [ 3k2- Jr- 2k2C~N~2 ](dNI 2 (38) 
1 - N C-9-~ ~ N) 2] ~ L2(1 - N) 2 C2(l - N)3J~d~J 

3. C O M P U T A T I O N A L  RESULTS 

For the quasistatic case, the self-consistent density profile in the high- 
power laser-plasma has been obtained (Shen and Zhu, 1988) (Fig. 1). The 



174 Z h u  et aL 

N 1.5 

1.0 

-12 -10 -8 -6 -4 -2 0 

Fig, 1, The self-consistent density in a strong-laser plasma. 

spatial distributions of the optical metric, affine connection, and curvature 
have been investigated numerically, and the computational results are shown 
in Figs. 2-4. 

We see from Fig. 2 that the optical metric components g00 and g01 are 
not continuous at N = 1 and tend to infinity. This reflects that the light is 
stopped at the critical density point. In the region of N < 1, g00 and g01 
exhibit oscillatory behavior with the standing wave structure. 

Figure 3 shows the spatial distributions of F ~  F~ Ft~ F~0, F011, and 
F[~. As seen, the curves are not continuous at N = 1 and N = N~. The curves 
tend to infinity at N = 1 and reach the same numerical values with opposite 
signs at N = N~ when N comes from the left and right. 

Figure 4 shows the spatial distributions of the Ricci curvature tensors 
(R00, R01, and R10 and the spatial distribution of the scalar curvature R. The 
curves are not continuous at N = 1, N = N~, and N = Nr, in, and they tend 
to infinity at N = 1 and N = Nm~,. 

4. CONCLUSION 

The laser plasma is a complex physical object and it is analytically 
intractable. If the laser-plasma system is regarded as a compound consisting 

"~,,o -z_4~ [ (a) 
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Fig. 2. The spatial distribution of the optical metric (a) g00 and (b) goJ, 
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Fig. 3. The spatial distribution of the affine connection [_the components (a) ~o, 
(b) F~,, (c) po, (d) r~0, (e) F~, (0 FIll. 
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of photons, electrons, and ions embedded in a background characterized by 
the optical metric, then information on the interaction of light with the plasma 
helps us to understand the space-time structure of the background with the 
optical metric and to explain the behavior of the photons, electrons, and ions 
in such a "curved" space-time. 

In this paper, we derived the optical metric, affine connection, and 
curvature for a strong-laser plasma moving along the x direction, and we 
studied their spatial distributions numerically. The behavior of the light and 
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Fig. 4. The spatial distributions of the Ricci curvature tensor [components (a) R~, 
(b) Rm, (c) RIiI and (d) the scalar curvature R. 

plasma in the space-time with the optical metric will be discussed elsewhere. 
Since the optical metric and the gravitational metric are mathematically 
equivalent, their physical variables and formalism have the same forms; 
some phenomena in the gravitational field can be simulated by the optical 
phenomena in a moving medium. 
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